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The Numerical Solution of Fractional
Differential-Algebraic Equations (FDAEs) by Haar
Wavelet Functions
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Abstract— In this paper, the numerical solution of Fractional
Differential-Algebraic Equations (FDAESs) is considered by
Haar wavelet functions. We derive the Haar wavelet
operational matrix of the fractional order integration and by

using it to solve the Fractional Differential-Algebraic Equations.

The results obtained are in good-agreement with the exact
solutions. It is shown that the technique used here is effective
and easy to apply.

Index Terms— differential-algebraic equations (DAES),
fractional differential-algebraic equations (FDAEs), Haar
wavelet method, operational matrix

I. INTRODUCTION

Fractional modeling in differential equations has gained
considerable popularity and importance during the past three
decades or more. Besides, Differential-Algebraic Equations
(DAES) have been successfully used to characterize for many
physical and engineering topics such as polymer physics,
fluid flow, electromagnetic theory, dynamics of earthquakes,
rheology, viscoelastic materials, viscous damping and
seismic analysis. Also differential-algebraic equations with
fractional order have been made in some mathematical
models in recent times. As known, fractional
differential-algebraic equations usually do not have exact
solutions. Therefore, approximations and numerical
techniques must be used for them and also the solution of
these equations has been an attractive subject for many
researchers. [1] - [2] - [3] — [4] - [5] - [6] - [7]

In this paper, we want to show by using Haar wavelet
functions to solve the fractional order differential-algebraic
equations. Firstly, we derive Haar wavelet operational matrix
of the fractional order integration and then we use the Haar
wavelet operational matrices of the fractional order
integration to completely transform the fractional order
systems into algebraic systems of equations. Finally, we
solve this transformed complicated algebraic equations
system by the software Mathematica.

A fractional differential-algebraic equation (FDAE) with the
initial conditions is defined as the form below [8]

DY x;(t) = fi(t, x1, X, ... Xy X7, Xh, ... X
i=123.n—1 t>0,0<a <1
gt x4, x5,..x,) =0

x;(0) = q;

i=123,..,n 1)
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I1. BASIC DEFINITIONS

There are several definitions of a fractional derivative of
order a > 0 [9], for example, Riemann-Liouville, Caputo,
Grinwald-Letnikov, Hadamard and the generalized functions
approach.  The most common  definitions are
Riemann-Liouville and Caputo. We give some basic
definitions and properties of fractional calculus theory which
are used in this paper.

Definition 2.1. A real function f(x),x > 0.is said to be in
the space C,, u € R if there exists a real number p > u such
that f(x) = xPf;(x), where f,(x) € C[0,0) . Clearly,
C.cCGif p<up.

Definition 2.2. A function f(x),x < 0. is said to be in the
space C;*,m € Nu {0} if f(™ €,

Definition 2.3. The Riemann-Liouville fractional integral
operator of order « > 0 of a function,

fec, u=-1,isdefined as

1%f(x) = ﬁa)fo"(x — )@ (t)dt,a > 0,x > 0 )
I°f(x) = f(x) ©)

The properties of the operator I* can be found in [10, 11].
We make use of the followings.
ForfeC, u=-1, a,f=0 andy>-1

L IR f(x) = 1**B f(x) (4)

2. I*IPf(x) = 1P1f (x) (5)
ayy — LW+ a4y

3. % _F(a+y+1) (6)

The Riemann- Liouville fractional derivative has some

disadvantages making a model for real-world subjects using
fractional differential and fractional differential-algebraic
equations. Therefore, we sometimes use a modified fractional
differential operator DZ introduced by Caputo’s work on the
theory of viscoelasticity [12].

Definition 2.4. The fractional derivative of f(x) by Caputo is
defined as

DEf(x) = I™*D™f (x)
=[x — " FM()dt,

- r(m-a)

™

form—1<a<m, meN, x>0, feCT.
Also, we need here two basic properties.

Lemma2l1.1f m—1<a<m, meN and
fecC,m=-1,then

1L DEI*f(x) = f(x) ) ®)
2. I°DEf(x) = () = Ziss fP(01) 3, x> 0.
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I1l. HAAR WAVELET OPERATIONAL MATRIX OF FRACTIONAL
ORDER INTEGRATION

i. One-dimensional Haar Functions

The scaling function for the family of the Haar wavelets is
defined on the interval [0, 1) and is given as below

ha(t) = hy (27t = k),

n=2/+k j=20,0<k<?2 njkez (10
where
ho(t) =1, 0<t<1,
_ 1, 0<t<05
hl(t)_{ -1, 05<t<1 (11)

each Haar wavelet h,, has the support (277k, 27/(k + 1)),
so that it is zero elsewhere in the interval [0, 1). As might be
expected, as n increases, the Haar wavelets become
progressively localized. That is, {h,(t)} are like a local
basis.

Any function f(t) € L,([0,1]) have an expansion in Haar
series

[ee)

f© =) ahi®

i=0

i=2/+k j>0,0<k<?2/ (12)

where the Haar coefficients ¢;, i = 1,2, ..., are written by

¢ =2/ [} fFOR (Dt (13)
which are determined such that the following integral square
error ¢ is minimized

e= fo 1 [f(t) - mz: cihi(t)]z dt,

m=2/, je{0}UN
(14
By using the orthogonal property of Haar wavelet

1 .
271, i=1
h,()h;(t)dt = { ’ ’
[ meom@ae= {12
The series in Eq. (12) has infinite number of terms. If f(t) is
piecewise constant or may be approximated as piecewise
constant, then the sum in Eq. (12) may be terminated after m
terms, that is [15]
f® = TG cihi(®) = CRHR (0 = (&) (15)
where m = 2/, T indicates transposition, f(t) denotes the
truncated sum. The Haar coefficient vector C,, and Haar
function vector H,, (t) are defined as
(16)

Cpy 2 [CorCpponesCyn]T

Hi () 2 [ho(£), hy (1), o) i1 (D]7 17
Selecting the collocation points as following
E=21i=12..,m (18)
We defined the m-square Haar matrix ®,,,,, as
1 3 2m—1
Omen [t () () (T
(19)

For example, when m = 8, the Haar matrix is formed as

1 1 1 1 1 1 1 1
11 1 1 -1 -1 -1 -1
11 -1 -1 0 0 0 0
6. -0 0 0 0 1 1 -1 -1
#8=11 -1 0 0 0 0 0 0
o0 1 -1 0 0 0 0
o0 0 0 1 -1 0 0
o o o o o0 0 1 -

(20)
Correspondingly, we have

A_Al (3 L2m—1 - T
=1 () ()7 (G )| = Ghomen
(21)
Because the m-dimensional Haar matrix &, is an
invertible matrix, the Haar coefficient vector CI can be

obtained by [13]

(22)

CT”?; = fmcb_l mxm
ii Operational matrix of the fractional order integration

The integration of the H,,(t) defined in Eqg. (17) can be
approximated by Haar series with Haar coefficient matrix P
[16].
t

fo Hp (7)dT = Py Hp (8) (23)
where the m-square matrix P is called the Haar wavelet
operational matrix of integration [14]. Our goal is to derive
the Haar wavelet operational matrix of the fractional order

integration. For this goal, we use the definition of Riemann—
Liouville fractional order integration, as below [13]

Ia — 1 ‘ 1 a—-1 d _ 1 a—-1
( f)(t)__l“(a)JO( - ) 1f (1) T——F(a)t * f(t)
(24)

where t*~1 * £(t) denotes convolution product. Now if f(t)
is expanded in Haar functions, as shown in Eqg. (15), the
Riemann—Liouville fractional integration becomes

1 ~ 1
I*)E) = =t 1*f(t)~CrEm

) {t* 1« Hp (6)}

(25)
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Thus if t%71 % f(t) can be integrated, then expanded in Haar
functions, the Riemann-Liouville fractional order integration
is solved by the Haar functions.

However, we can define a m —set of Block Pulse Functions
(BPFs) as

1, 1/ m<t<(1+m)/m,

i otherwise (26)

bi(©) = {

wherei =0,1,2,-,(m — 1)

b; (t) functions have some useful properties like disjointness
and orthogonality. Respectively that is,

GINGES (21)
Jy@n@dr={3, L7 (28)

As seen the Haar functions are piecewise constant, and so it
can be transformed into an m-term block pulse functions
(BPF) as

Hp, (t) = (pmxmBm(t) (29)

where
B (t) 2 [bo(t) bo(t) -+ by(t) by (O)]”

Kilicman and Al Zhour [15], have introduced the Block Pulse
operational matrix of the fractional order integration F* as
follows

(30)

(I*Bp)(t) = FYBp(t) (31)
where
1 & & $m-1
[0 1 '51 fm—zl
oo ]
0O 0 0 O 1
with &, = (k + 1)%%1 — 2k%*1 ¢ (k — 1)1 (33)

Next, we derive the Haar wavelet operational matrix of the
fractional order integration.
Let

(I“Hp)(€) = P Hm () (34)
where the m — square matrix B%,,, is called the Haar
wavelet operational matrix of the fractional order integration.
Using Egs. (29)(30) and (31), we get

(I“Hp) () = (1P sy B) (8) = Prysen [“By) (1) =
Py F* By (6 (35)
from Egs. (34) and (35) we get

PisxmHm () = PxmPmsxmBm () = PrmxmF B (t) (36)
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Then, the Haar wavelet operational matrix of the fractional
order integration P%., is written by

a — agp-—-1
mem - q:'m><mF (bmxm

37)

For example, « = 0.5 and m = 8, the operational matrix

BP%..m is computed below [15]

0.7523
[0.2203
[0.0410

pos. — |0.0779
58 = 10,0094
lo.0112
|[0.0145
0.0275

—0.2203 —0.1558 -—0.0820
0.3116 —0.1558 0.2296
0.1148  0.2203 —0.0350

—0.0779 0 0.2203
0.0196  0.0812 —0.0032
0.0439 —0.0551 —0.0194

—0.0145 0 0.0812

—0.0275 0 —0.0551

—0.1102 —0.0580 —0.0447

—0.1102 -0.0580 0.1756

—0.1102 0.1623 —0.0389
0 0 —0.1102

0.1558 —0.0247 —0.0026
0 0.1558 —0.0247
0 0 0.1558
0 0 0

—0.0377
0.0782

—0.0063|
0.1623 |
—0.0009|
—0.0026]
—0.0247
0.1558 |

Iv. NUMERICAL APPLICATIONS

Showing the efficiency of the method, we consider the
following fractional differential-algebraic equations. All the
numerical results were obtained by using the software
Mathematica 10.0

Example 4.1. We consider the following fractional
-algebraic equation.
0<ac<l

D%x(t) —tDy(t) +x(t) — (1 + t)y(t) =0
y(t) —sint =0
(38)

with initial conditions x(0) = 1, y(0) = 0 and exact
solutions x(t) = e~t + tsint, y(t) = sint

whena =1

Now, we redesign all terms of the equation with Haar series
form below. Firstly, let

Dx(t) = RTH,,,(t) (39)
and
Dy(t) = K"Hp () (40)
with the initial states, we get
D%x(t) = R" PrxinHpm (t) (41)
x(t) = R PpxmHn () + 1 (42)
x(0)
y(t) = K" PamHn () + 0 (43)
¥(0)
Similarly, f(t) = sint can be expanded by the Haar
functions below
f(t) = frEHm () = [sin t]haar (44)

Substituting Eqgs. (40-41-42-43-44) into (38), we get

RTPLI ¢ H, (t) —tKTH,,(t) + RTPL, H,(t) +1
- (A +t)K"PL W H,(t) =0

KTPn%mem(t) — [sint]paar =0
(45)
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Hereby, Eqg. (38) has been transformed into a system of
algebraic equations. Substituting values and solving the
algebraic equations system, we can find the coefficients R, .
Then using Eq. (42), we can get x(t). The numerical results
for m = 8,32,128 are shown in Table 1,2,3 and Fig 1,2,3.
The numerical solution is in good agreement with the exact
solutions.

Table 1. Comparison of the numerical values of x(t) for

m=38
m=8 «=0.25 «=0.5 «=0.75 =1
t x(t) x(t) x(t) x(t) Xexact(t) | Xerror(t)
t=0 0.718159 = 0.834216 = 0.907282 = 0.948749 = 1. 0.0512505
t=0.1  0.718159  0.834216  0.907282  0.948749  0.914821  0.0339287
t=0.2 | 0.686364 = 0.729621 = 0.802391 = 0.868562 = 0.858465 = 0.0100972
t=0.3  0.841455  0.805047  0.800684  0.831463  0.829474 = 0.00198882
t=0.4 | 0.920544 = 0.876959 = 0.841859 = 0.834009 = 0.826087 = 0.0079216
t=0.5 = 1.08287 0.989918  0.917579  0.872034  0.846243 = 0.0257907
t=0.6 = 1.08287 0.989918 = 0.917579 = 0.872034 = 0.887597 = 0.015563
t=0.7 = 1.19744 1.11038 1.01788 0.940697  0.947538  0.0068404
t=0.8 = 1.34758 1.24052 1.13501 1.03455 1.02321 0.0113343
t=0.9 1.46242 1.36971 1.26177 1.14762 1.11156 0.0360512
— a=0.25
a=0.5
a=0.75
a=1
— Kewall)

Fig 1. The graph of x(t) for different values of « form = 8

Table 2. Comparison of the numerical values of x(t) for

m = 32

m=32 «=0.25 x=0.5 «x=0.75 =1

f x(t) x(t) x(t) x(t) Xexact(t) Xerror(t)
t=0 0.755277 0.898167 0.960868 0.9851 1. 0.0149001
t=0.1 0.668525 0.758682 0.842397 0.908652 0.914821 0.00616903
t=0.2 0.734891 0.755093 0.801024 0.857432 0.858465 0.00103258
t=0.3 0.80229 0.788708 0.79753 0.830224 0.829474 0.000749809
t=0.4 0.891566 0.845801 0.821455 0.825576 0.826087 0.000511798
t=0.5 1.01993 0.946003 0.88577 0.851529 0.846243 0.00528577
t=0.6 1.12119 1.03327 0.952761 0.892594 0.887597 0.00499712
t=0.7 1.22366 1.12698 1.03187 0.949773 0.947538 0.00223485
t=0.8 1.32443 1.22407 1.1199 1.0207 1.02321 0.00251104
t=0.9 1.42115 1.3217 1.21382 1.10286 1.11156 0.00870196

68
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a=0.5

x(t)

a=0.75

a=1

— a0

Fig 2. The graph of x(t) for different values of a for
m =32

Table 3. Comparison of the numerical values of x(t) for

m = 128
m=128 | «=0.25 @ «=05 | «=0.75 «=1
t x(t) x(t) x(t) x(t) Xexact (t) Xerror ()
t=0 0.808558 0.944945 0.985447 0.996139 1. 0.00386059
t=0.1 0.679012 0.76541 0.851144 0.916502 0.914821 0.00168166
t=0.2 0.727777 0.754367 0.80185 0.858814 0.858465 0.000349671
t=0.3 0.807262 0.790713 0.798005 0.829366 0.829474 0.000108214
t=0.4 0.90261 0.854189 0.826033 0.826312 0.826087 0.000224122
t=0.5 1.00732 0.935718 0.87841 0.847487 0.846243 0.00124384
t=0.6 1.10845 1.02195 0.943653 0.886413 0.887597 0.00118456
t=0.7 1.2194 1.12299 1.02838 0.94701 0.947538 0.000527254
t=0.8 1.32856 1.22814 1.12372 1.02386 1.02321 0.000649027
t=0.9 1.43283 1.33381 1.22584 1.11376 1.11156 0.00219866
a=0.25
a=0.5
a=0.75
0.4 2=l
. ——
0.0
0.0 0.2 0.4 0.6 0.8

Fig 3. The graph of x(t) for different values of « for
m =128

Example 4.2. We consider the following fractional
differential-algebraic equation.

D%x(t) + x(t) — y(t) = —sint
x(t) +y(t) = et +sint
O0<a<1

(46)

with initial conditions x(0) =1, y(0) =0 and exact
solutions x(t) = et and y(t) = sint whena = 1
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Now, let
Dx(t) = UTH,,(t) 47)
and
Dy(t) = VT Hp(t) (48)
with the initial states, we get
D%x(t) = UT PpxiuHm () (49)
x(t) = UTP‘Hl’leHm(t) + \}J (50)
x(0)
Y(®) = VT PhymHy () + 0 (51)
y(0)
Similarly,
j(t) = —sint
and
n(t) = et + sint
can be expanded by the Haar functions below
j@®) = er;LHm () = [-sint] haar
) n(t) = n:rrnHm(t) = [e_t + sin t]haar (52)

Substituting Egs. (48-49-50-51-52) into (46), we get

UTBisinHm (6) + UT Py Hy (8) + 1 = VT P Hypy (1)
+ [sint]pgar =0

UTPnllmem(t) +1+ VTPnlfomHm ®) - [e_t + sin t]haar
=0

(53)
Hence, Eq. (46) has been transformed into an algebraic
equations system. Solving this system, we can find the
coefficients UT . Then using Eq. (50), we can get x(t). The
numerical results for m = 8,32,128 are shown in Table 4,5,6
and Fig 4,5,6 for x(t) and by same way for y(t) are shown in
Table 7,8,9. and Fig 7,8,9. The numerical solution is in good
agreement with the exact solutions.

Table 4. Comparison of the numerical values of x(t) for

m=2_8
m=8 «=0.25 «=0.5 «=0.75 =1
& x(t) x(t) x(t) x(t) Xexact(t) | Xerror(t)

t=0 0.740771 = 0.830452 = 0.89799 0.941079 1. 0.0589215
t=0.1 0.740771 = 0.830452 = 0.89799 0.941079  0.904837 = 0.0362411
t=0.2 0.629461 = 0.677678 = 0.753775 = 0.830197 = 0.818731 = 0.011466
t=0.3 0.620348 0.642125 0.673724 0.732411 0.740818 0.00840716
t=0.4 0.552602 = 0.578078 @ 0.605185 @ 0.646168 @ 0.67032 0.0241523
t=0.5 0.541898 = 0.540616 = 0.547911  0.570099 = 0.606531 = 0.0364318
t=0.6 0.541898 = 0.540616 & 0.547911 = 0.570099 = 0.548812 = 0.0212872
t=0.7 0.494188 = 0.499459 = 0.498046  0.503 0.496585 = 0.00641461
t=0.8 0.481892 = 0.466772 = 0.454117 @ 0.44381 0.449329 | 0.00551909
t=0.9 0.447091 = 0.435622 = 0.415053  0.391594 = 0.40657 0.0149757
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1.0

0.9
0.8 — a=0.25
= a=0.5
=1 0.7
a=0.75
0.6
a=1

0.5 — X

exact

0.4

Fig 4. The graph of x(t) for different values of a form = 8

Table 5. Comparison of the numerical values of y(t) for

m=38
m=8 «=0.25 «x=0.5 «=0.75 =1

t y(t) y(®) y(®) y(®) Yram (£) Yuara ()
t=0 0.261101 | 0.17142 0.103883 | 0.060793 | 0. 0.0607939
t=0.1 = 0261101  0.17142 0.103883  0.060793  0.099833  0.0390395
t=0.2 = 0.385971 | 0.337755  0.261658  0.185236  0.198669 | 0.0134337
t=0.3  0.418706  0.396929  0.36533 0.306643  0.29552 0.0111229
t=0.4 = 0516723 = 0.491247 | 0.46414 0.423157 | 0.389418 | 0.0337387
t=0.5 = 0.561187 = 0.56247 0.555174 | 0.532987 = 0.479426 | 0.0535611
t=0.6 = 0561187 = 0.56247 0.555174 | 0532987 | 0.564642 | 0.0316558
t=0.7 = 0.643251  0.637979 = 0.639393 | 0.634439 | 0.644218 = 0.0097789
t=0.8 | 0.687864 | 0.702984 | 0.715639 | 0.725946 | 0.717356 | 0.0085900
t=0.9  0.750595 = 0.762064  0.782634 | 0.806093 | 0.783327 = 0.0227659

— a=025

a=0.5

@=0.75
a=1

T Yeaalt)

Fig 5. The graph of y(t) for different values of a« form = 8

Table 6. Comparison of the numerical values of x(t) for
m=32

m=32 «=0.25 «=0.5 «=0.75 =1

‘ x(t) x(t) x(t) x(t) Xexact(t) | Xerror(t)
t=0 0.795161 | 0.903384 & 0.960563 = 0.984614 @ 1. 0.0153864
t=0.1 0.676905 = 0.75091 0.827633  0.896485  0.904837 = 0.00835263
t=0.2 0.648953 | 0.689144 = 0.747001  0.816245  0.818731 = 0.0024854
t=0.3 0.607608 = 0.641041 = 0.683477  0.743189  0.740818 = 0.00237058
t=0.4 0.580252 | 0.600786 & 0.629933 @ 0.676672  0.67032 0.0063519
t=0.5 0.544298  0.554566 = 0.568868 @ 0.597151  0.606531 = 0.00937943
t=0.6 0.520223 | 0.523946 & 0.528777 = 0.543706 = 0.548812 @ 0.00510517
t=0.7 0.498754 = 0.496064 = 0.492542  0.495045  0.496585 = 0.00153984
t=0.8 0.478835 | 0.47051 0.459554 = 0.45074 0.449329  0.001411
t=0.9 0.460617 = 0.446988 @ 0.429373 = 0.4104 0.40657 0.00383038
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Fig 6. The graph of x(t) for different values of a for
m = 32

Table 7. Comparison of the numerical values of y(t) for

m = 32
m=32 | «=0.25 x=0.5 x=0.75 x=1
t y(t) y(t) y() y(t) Yram(t) Yrara(t)

t=0 0.20496 0.0967363 = 0.039558 | 0.0155072 0. 0.0155072
t=0.1 | 0.328647 = 0.254642 | 0.177918 | 0.109066  0.0998334  0.0092330
t=0.2 | 0.368954 | 0.328763 | 0.270906 | 0.201662 | 0.198669 | 0.0029925
t=0.3 | 0.428062 | 0.39463 0.352194 | 0.292481  0.29552 0.0030387
t=0.4 | 0.477148 | 0.456614 | 0.427467 | 0.380728 | 0.389418 | 0.0086900
t=0.5 = 0.545908 | 0.53564 0521338 | 0.493055 | 0.479426  0.0136292
t=0.6 | 0595822 | 0.5921 0587269 | 0572339 | 0564642 | 0.0076967
t=0.7 = 0.642886 | 0.645576  0.649099  0.646595  0.644218  0.0023774
t=0.8 | 0.687076 | 0.695401 | 0.706357 | 0.715171 | 0.717356 | 0.0021853
t=0.9 = 0727248 | 0.740876  0.758491 | 0.777464  0.783327  0.0058628

Fig 7. The graph of y(t) for different values of a for
m =32

Table 8. Comparison of the numerical values of x(t) for

m = 128

m=1s «=0.25 x=0.5 «=0.75 x=1

g x(t) x(t) x(t) x(t) Xexact(t) Xerror(t)
t=0 0.837625 = 0.947223 = 0.985487 @ 0.996108 1 0.003891
t=0.1 0.694830  0.762959 = 0.839847 = 0.906966 = 0.904837 = 0.002129
t=0.2 0.645960 = 0.691372 = 0.750024 = 0.819375 @ 0.818731 @ 0.000644
t=0.3 0.608269 = 0.639287 = 0.681130 = 0.740242  0.740818 = 0.000575
t=0.4 0575881 = 0.596161 & 0.623803 @ 0.668753 @ 0.67032 0.001566
t=0.5 0547148  0.558630 = 0.574218  0.604167 @ 0.606531 = 0.002363
t=0.6 0523189 = 0.527625 @ 0.533584 = 0.550100 & 0.548812 @ 0.001288
t=0.7 0.499571 = 0.497186 = 0.494000  0.496974 @ 0.496585  0.000388
t=0.8 0.478068 = 0.469498 = 0.458257 @ 0.448978 @ 0.449329 = 0.000350
t=0.9 0.458432  0.444184  0.425791 @ 0.405617 = 0.40657 0.000951
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Fig 8. The graph of x(t) for different values of « for
m =128

Table 9. Comparison of the numerical values of y(t) for

m = 128
mE T «=0.25 «=0.5 «=0.75 x=1
t y(©) y(6) y(®) y(t) Yram(t) Yuara ()
t=0 0.162382 0.052784 0.01452 0.0038986 0. 0.00389869
t=0.1 0.309632 0.241502 0.164614 0.0974953 = 0.099833 0.00233816
t=0.2 0.371313 0.325902 0.26725 0.197899 0.198669 0.00077010
t=0.3 0.428237 0.397219 0.355376 0.296263 0.29552 0.00074306
t=0.4 0.484445 0.464165 0.436523 0.391574 0.389418 0.00215538
t=0.5 0.539867 0.528386 0.512797 0.482848 0.479426 0.00342282
t=0.6 0.589617 0.58518 0.579222 0.562705 0.564642 0.00193698
t=0.7 0.641022 0.643407 0.646593 0.643619 0.644218 0.00059834
t=0.8 0.68881 0.69738 0.708621 0.7179 0.717356 0.00054380
t=0.9 0.731967 0.746215 0.764608 0.784782 0.783327 0.00145472
— a=0.25
a=0.5
a=0.75
a=1
—_— Yo

t

Fig 9. The graph of y(t) for different values of « for
m =128

V. CONCLUSION

In this paper, the Haar wavelet functions has been extended to
solve fractional differential-algebraic equations (FDAES).
The results obtained by the method are in good agreement
with the given exact solutions. The study show that the
method is effective techniques to solve fractional
differential-algebraic equations, and the method presents real
advantages in terms of comprehensible applicability and
precision
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